Imagerie aérienne légère

www.lavionjaune.fr

L'avion Jaune

• entreprise créée en 2005
• plus de 500 missions réalisées
• issue de la recherche (incubation au Cemagref)
• projets de recherche en coopération avec l'INRA, l'IRSTEA, l'IRD...
• En 2015 : création d'une nouvelle société YellowScan
• En 2017 : 8 collaborateurs AJ + 8 collaborateurs YS
• Rentable. R&D financé sur fonds propres + aides locales

Bruno Roux
Michel Assenbaum
Mikaël Jouanne
Marion Houlès
John Plantevoet
Marie de Boisvilliers
Thomas Stokart
Susanne Assenbaum

Responsable de développement
Gérant et ingénieur R&D
Pilote drone et avion
Ingénieur en traitement d'images
Pilote drone et CAO
Chefs de projets et traitements d'images
Informaticien et développeur
Comptabilité et administration
Nos activités

Les vecteurs drones

- Flotte de drones de différentes catégories
- Choix suivant la charge utile, la zone à couvrir, la réglementation, la résolution (rapport vitesse/filé), le terrain (lancé main, rampe), météorologie
 → couverture jusqu'à 10 000 ha/jour

Drone Altium

4m, 7kg, 1500g, 25-60 km/h, 20 minutes, 15 km

4m, 15kg, 3000g, 40-130 km/h, 3 heures, 150 km

2.5kg, 1500g, stationnaire, 15/20 minutes, 2 km
Des résolutions millimétriques

A 30 m de hauteur, en drone, on peut atteindre des résolutions de 2 mm

Les vecteurs ULM

- vitesse : 80 à 140 km/h
- altitude : 150 à 3500m
- couverture : 100 à 10000 ha
De larges territoires couverts

- Plus de 83000 ha de vignobles couverts en 2016 en Gironde
- Avec 2 avions, en 2 jours

Les capteurs

Appareil photo couleurs naturelles

Appareil photo infrarouge

Appareil photo red-edge

Calibration optique

Caméras thermiques

Caméra THR photogrammétrique

Capteur multispectral 8 bandes

Capteur lidar
Déroulement d'une mission

- Analyse des Besoins
 - Pour quoi faire ?
 - Pour qui ?
 - Quand ?

- Cahier des charges
 - Résolution, emprise, qualité optique, qualité radiométrique, métadonnées utiles, produits finals

- Conditions de vol
 - Vent, altitude, relief, durée de vol, distance à franchir, réglementation

CHOIX DU MATERIEL

- Capteurs
 - Multispectrale LIDAR, thermique, hyperspectral ...

- Système embarqués
 - GPS, centrale inertielle, interface graphique ...

- Vecteurs
 - Voilante, multirotors, ULM, Cerf volant, hélicoptère ...

... ou développement

Déroulement d'une mission

PREPARATION DU VOL

- Demande d'autorisations (aéronautiques, propriétés privées ...)

- Création du plan de vol sous SIG et intégration dans le système embarqué

- Préparation et vérification du matériel (batteries, mise au point des capteurs ...)

PENDANT LE VOL

- Contrôle des capteurs (réglages, déclenchements)

- Contrôle de la trajectoire et des emprises en temps réel

- Assistance au pilote
Déroulement d'une mission

TRAITEMENT DES DONNEES

1. Récupération des données (photos, APL, GPS)
2. Prétraitements des vues (derawtisation, devignetage)
3. Registration des vues
4. Traitements photogrammétriques (Micmac, Simactive, LPS)
5. Extraction d'informations
6. Livraison des données

Déroulement d'une mission

DES PRODUITS DE BASE

Orthophotographies (VIS, IRC ...)
Orthophoto-mosaïques
MNS
MNT

DES PRODUITS DERIVES

Classifications, photo-interprétations
Des indices de végétation
Des modèles 3D texturés
Des plans topographiques
1. Cartographie par aile volante

Cartographie de plantation de palmiers en Afrique

3000 images orthorectifiées et mosaïquées en VIS et IRC
1. Cartographie par aile volante

Cartographie de plantation de palmiers en Afrique

- Un défi numérique de taille
- Comptage automatique des palmiers
- Classification automatique : malade, petit, manquant, jaune ...

2. Cartographie 2D Multispectrale

Cartographie de l’essartement sur la Durance (EDF)

- La durance : rivière du Sud-Est de la France de 324 km
- Durance abrite un patrimoine biologique important : faune, flore, nombreuses espèces endémique
- La moitié du linéaire classé (ZNIEFF, réserves naturelles, conservation du Biotope, natura 2000 ...)
- Aménagements urbains et agricoles gagnent du terrain sur le lit
- Aménagements hydroélectriques perturbent l’écoulement de l’eau
- Développement d’espèces invasives

→ EDF est chargé de l’essartement régulier du lit : maintenir une largeur variable au sein du lit exempté de végétation arborée et limiter les espèces invasives

→ L’avion Jaune régulièrement missionné par EDF pour préparer la campagne d’essartement
2. Cartographie 2D Multispectrale

Cartographie de l'essartement sur la Durance (EDF)

- 230 Km de riviere = 350 images à 40 cm de résolution
- RVB + PIR
- ULM permet de suivre parfaitement les méandres du cours d'eau
- 2 objectifs pour l'AJ

![Mosaïque IRC](image)

Classification automatique des zones en eau

Vecteur du lit mouillé au format shp intégrable dans un SIG

Analyse globale

GRILLE DES CRITÈRES PHYSIQUES UTILISÉS POUR L'IDENTIFICATION DES MÉSOHABITATS ET LEUR CODIFICATION (d'après demograph, 2000)

<table>
<thead>
<tr>
<th>Surface de l'eau</th>
<th>Pente</th>
<th>Vitesse</th>
<th>Profondeur</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lisse conduite</td>
<td>< 0.4%</td>
<td>> 30 cm/s</td>
<td>> 60 cm</td>
<td>A</td>
</tr>
<tr>
<td>h < 5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lisse inclinée</td>
<td>< 0.4%</td>
<td>> 30 cm/s</td>
<td>> 60 cm</td>
<td>B1</td>
</tr>
<tr>
<td>h > 5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>présence de vagues</td>
<td>> 0.4%</td>
<td>> 30 cm/s</td>
<td>> 60 cm</td>
<td>C1</td>
</tr>
<tr>
<td>h > 5 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 0.4%</td>
<td>> 30 cm/s</td>
<td>< 60 cm</td>
<td>G1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Lit en eau lors de la mission photographique de Juillet 2010
- Localisation des stations D0bis, D1 et D2
- Localisation des transects levés
- Principales villes, villages, hameaux ou lieux dits
Utilisation de l'orthophoto
Comme référentiel spatial
de l'étude
2. Cartographie 2D Multispectrale

Cartographie de l’essartement sur la Durance (EDF)
Estimation de biomasse en rivière (CNPE CRUAS)
Caractérisation des herbiers de phanérogame sur l'étang de Canet-St-Nazaire
Évaluation du recouvrement au sol par photo-interprétation

Recouvrement au sol des herbiers

- important
- moyen
- faible
- présence d'herbier non détecté

26/05/2011

LiDAR pour drone
11-05-2017
12 ans d’expérience terrain
Imagerie aérienne et
télédétection

- Les fondateurs: levés terrain et recherche académique.
- Design et intégration de capteurs, conception de drones.
- Experts de l’imagerie aérienne haute définition.

Systèmes LiDAR clé en main

- Les LiDARs pour drone les plus légers aux monde.
- Tout intégrés et adaptables à tous les drones.
- Autonome (énergie et données).
- Prêt à l’emploi.
Conçu par des professionnels pour des professionnels

2012 Création du club utilisateurs YellowScan pour répondre au plus près aux besoins réels des topographes.

2013 Prototype – différentes applications/conditions/drones.

2014 YellowScan Mapper – Prix de l’innovation LR.

2015 Expansion internationale / Développement de nouveaux produits.

2016 YellowScan Surveyor

2017 YellowScan LiveStation

Notre expertise

- Capteurs
 Sélection et tests drastiques
 Design intégré, polyvalent et robuste

- Logiciels
 Synchronisation et traitement des données en temps réel, géoréférencement
 Précision relative et absolue du système, Open Source, compatible SIG/CAD

- Calibration
 Télédétection aérienne et experts RPAS
 Boresight angles, magnétomètres,…

- Support technique
 Assistance terrain, planification du Survey et des opérations, classification des données, évaluation de la précision relative, contrôle qualité